Spur gears / contact angle 20 degrees / module 0.8 (Part Numbers - CAD Download)

Part Number

Once your search is narrowed to one product,
the corresponding part number is displayed here.

Back to the Category Spur Gears

Technical Drawing - Spur Gears

Spur Gears/Pressure Angle 20Deg./Module 0.8:Related Image
Spur Gears/Pressure Angle 20Deg./Module 0.8:Related Image
Open the technical drawing in the new window

 

Available dimensions and tolerances can be found under the tab More Information.

Basic Properties (e.g., material, hardness, coating, tolerance) - Spur Gears

TypeMaterialSurface TreatmentAccessory
Straight BoreStraight Bore + Tap
-GEABNEN 1.1191 Equiv.-Set Screw
(EN 1.7220 Equiv. Black Oxide)
-GEABBBlack Oxide
-GEABGElectroless Nickel Plating
GEAHBGEABFree-Cutting Brass Bar-
-GEABSEN 1.4301 Equiv.-Set Screw (EN 1.4301 Equiv.)

Further specifications can be found under the tab More Information.

Composition of a Product Code - Spur Gears

Part Number-Number of Teeth-B-Gears
Shape
-P
GEAB0.8
GEAHB0.8
GEABS0.8
-
-
-
25
30
15
-
-
-
5
7
7
-
-
-
B
A
K
-
-
-
6
8
5

Alterations - Spur Gears

Spur Gears/Pressure Angle 20Deg./Module 0.8:Related Image

General Information - Spur Gears

Spur gears - front gear with through hole - spur gear with spring pin - spur gear made of brass - brass pinion - plastic - spur gear with ball bearing

 

Selection details of spur gears

- Material: steel, stainless steel, sintered steel, nylon, polyacetal, brass, aluminum, cast iron

- Coatings: burnished, nickel-plated

- Heat treatment: induction hardened

- Shaft diameter tolerances: H7, H8

- Tooth flank clearance: N5, N7, N8, N9, N12

- Module: 0.3, 0.5, 0.75, 0.8, 1, 1.25, 1.5, 2, 2.5, 3, 4, 4.5, 5, 6, 8, 10, 15, 20

- Pressure angle: 20°

- Shaft diameter: 2 mm to 50 mm

- Number of teeth: 8 to 200

- Tooth width: 2 mm to 90 mm

 

Description/Basics

The spur gears offered are generally machine elements that serve the non-slip transmission of force, movement transmission or movement change. The teeth of the cylinder wheels grip each other during transmission and largely roll over the tooth flanks. The tooth shape of the spur gear is convexly shaped in the shaped tooth system. At the beginning of the intervention, a rolling resistance acts on the tooth flank, which becomes a sliding friction in the course of the rotation.

A combination of gear wheels and rack gears is useful in the construction of rack gear. This allows motor rotary motion or other rotary motion to be converted into linear motion. rack gear boxes are theoretically possible in an endless assembly. Limits here only set the length of the rack gears for the rack gear drive.

Gear wheels with straight gearing are particularly suitable for the construction of gearboxes. The advantage of straight gearing as opposed to helical gears, is the possibility of transmitting a higher torque. It should be noted that with increasing speed within the transmission ratio or reduction, the torque to be transmitted decreases.

When designing spur gear pairs, the ratio of the gear ratio (number of teeth) and the module of the respective gear wheels must be observed.
The backlash is another important factor that must be considered during construction. Reverse play is understood as the result of the play that the change in the direction of rotation of a single gear wheel pair between the teeth. The risk of reverse play can be reduced if either the diameter or the number of teeth of the cogwheel pairing do not deviate too much from one another. If high wear is to be expected due to the pairing of gears, the MISUMI online shop offers gears with a hardened key-type.

For applications with the same rotational direction, it is possible to use an intermediate gear with integrated bearing on a cantilever shaft. The bearing number used can be found under the tab More Information. An overview of tolerances and permissible radial bearing deviations can be found in the following PDF.

In addition to gear wheels, MISUMI also offers suitable rotary shafts for the construction of a transmission. The straight front wheels can be assembled on these and secured with a set screw or machine keys (key with adjusting screw). This PDF provides an overview of the configurable mountings for the shaft rotation and keyway tolerances.
The continuous adjusting of a spur gear can be realized, among other things, by means of a clamping sleeve. The MISUMI online shop offers spur gears with clamping sleeve. Alternatively, we also offer individual keyless bushing that you can customize to your needs.

 

Application Examples - Spur Gears

Application example: workpiece transport - spur gear - rack gear - roller bearings - workpiece

Application example - spur gear with rack gear
(1) Spur gear, (2) Clamping knobs, (3) Rack gear

Application example: rack gear - spur gear with rack gear - handle - rotary handle

Application example - spur gear
(1) Spur gear, (2) Workpiece, (3) Rollers

 

Industrial Applications

3D printer industry
Automotive industry
Pharmaceutical industry
Packaging industry

Part Number:  

    3D preview is not available, because the part number has not yet been determined.

  • In order to open the 3D preview, the part number must be fixed.
Loading...
Part Number
GEAHBB0.8-26-5-B-[5-8/1]
GEAHBB0.8-26-7-A-6.35
GEAHBB0.8-26-7-A-[5-8/1]
GEAHBB0.8-26-7-B-6.35
GEAHBB0.8-26-7-B-[5-8/1]
GEAHBB0.8-27-5-A-6.35
GEAHBB0.8-27-5-A-[5-8/1]
GEAHBB0.8-27-5-B-6.35
GEAHBB0.8-27-5-B-[5-8/1]
GEAHBB0.8-27-7-A-6.35
GEAHBB0.8-27-7-A-[5-8/1]
GEAHBB0.8-27-7-B-6.35
GEAHBB0.8-27-7-B-[5-8/1]
GEAHBB0.8-28-5-B-6.35
GEAHBB0.8-28-5-B-[5-8/1]
GEAHBB0.8-28-7-B-6.35
GEAHBB0.8-28-7-B-[5-8/1]
GEAHBB0.8-29-5-A-6.35
GEAHBB0.8-29-5-A-[5-8/1]
GEAHBB0.8-29-5-B-6.35
GEAHBB0.8-29-5-B-[5-8/1]
GEAHBB0.8-29-7-A-6.35
GEAHBB0.8-29-7-A-[5-8/1]
GEAHBB0.8-29-7-B-6.35
GEAHBB0.8-29-7-B-[5-8/1]
GEAHBB0.8-30-5-B-6.35
GEAHBB0.8-30-5-B-[5-8/1]
GEAHBB0.8-30-7-B-6.35
GEAHBB0.8-30-7-B-[5-8/1]
GEAHBB0.8-32-5-B-6.35
GEAHBB0.8-32-5-B-[5-8/1]
GEAHBB0.8-33-5-A-6.35
GEAHBB0.8-33-5-A-[5-8/1]
GEAHBB0.8-33-5-B-6.35
GEAHBB0.8-33-5-B-[5-8/1]
GEAHBB0.8-34-5-A-6.35
GEAHBB0.8-34-5-A-[5-8/1]
GEAHBB0.8-34-5-B-6.35
GEAHBB0.8-34-5-B-[5-8/1]
GEAHBB0.8-35-5-A-6.35
GEAHBB0.8-35-5-A-[5-8/1]
GEAHBB0.8-35-5-B-6.35
GEAHBB0.8-35-5-B-[5-8/1]
GEAHBB0.8-36-5-B-6.35
GEAHBB0.8-36-5-B-[6-9/1]
GEAHBB0.8-38-5-A-6.35
GEAHBB0.8-38-5-A-[6-9/1]
GEAHBB0.8-38-5-B-6.35
GEAHBB0.8-38-5-B-[6-9/1]
GEAHBB0.8-39-5-A-6.35
GEAHBB0.8-39-5-A-[6-9/1]
GEAHBB0.8-39-5-B-6.35
GEAHBB0.8-39-5-B-[6-9/1]
GEAHBB0.8-40-5-B-6.35
GEAHBB0.8-40-5-B-[6-9/1]
GEAHBB0.8-42-5-A-6.35
GEAHBB0.8-42-5-A-[6-9/1]
GEAHBB0.8-42-5-B-6.35
GEAHBB0.8-42-5-B-[6-9/1]
GEAHBB0.8-44-5-A-6.35
Part Number
Standard Unit Price
Minimum order quantityVolume Discount
Standard
Shipping Days
?
RoHSNumber of Teeth
(Teeth)
Material (Details) Shape Surface Treatment Shaft Bore Dia.
(Ø)
Tooth Width B
(mm)
Hole Shape

-

1 7 Days -26[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide5 ~ 85Round Hole

-

1 7 Days -26[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide6.357Round Hole

-

1 7 Days -26[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide5 ~ 87Round Hole

-

1 7 Days -26[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.357Round Hole

-

1 7 Days -26[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide5 ~ 87Round Hole

-

1 7 Days -27[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide6.355Round Hole

-

1 7 Days -27[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide5 ~ 85Round Hole

-

1 7 Days -27[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.355Round Hole

-

1 7 Days -27[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide5 ~ 85Round Hole

-

1 7 Days -27[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide6.357Round Hole

-

1 7 Days -27[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide5 ~ 87Round Hole

-

1 7 Days -27[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.357Round Hole

-

1 7 Days -27[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide5 ~ 87Round Hole

-

1 7 Days -28[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.355Round Hole

-

1 7 Days -28[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide5 ~ 85Round Hole

-

1 7 Days -28[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.357Round Hole

-

1 7 Days -28[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide5 ~ 87Round Hole

-

1 7 Days -29[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide6.355Round Hole

-

1 7 Days -29[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide5 ~ 85Round Hole

-

1 7 Days -29[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.355Round Hole

-

1 7 Days -29[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide5 ~ 85Round Hole

-

1 7 Days -29[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide6.357Round Hole

-

1 7 Days -29[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide5 ~ 87Round Hole

-

1 7 Days -29[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.357Round Hole

-

1 7 Days -29[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide5 ~ 87Round Hole

-

1 7 Days -30[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.355Round Hole

-

1 7 Days -30[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide5 ~ 85Round Hole

-

1 7 Days -30[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.357Round Hole

-

1 7 Days -30[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide5 ~ 87Round Hole

-

1 7 Days -32[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.355Round Hole

-

1 7 Days -32[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide5 ~ 85Round Hole

-

1 7 Days -33[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide6.355Round Hole

-

1 7 Days -33[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide5 ~ 85Round Hole

-

1 7 Days -33[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.355Round Hole

-

1 7 Days -33[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide5 ~ 85Round Hole

-

1 7 Days -34[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide6.355Round Hole

-

1 7 Days -34[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide5 ~ 85Round Hole

-

1 7 Days -34[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.355Round Hole

-

1 7 Days -34[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide5 ~ 85Round Hole

-

1 7 Days -35[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide6.355Round Hole

-

1 7 Days -35[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide5 ~ 85Round Hole

-

1 7 Days -35[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.355Round Hole

-

1 7 Days -35[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide5 ~ 85Round Hole

-

1 7 Days -36[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.355Round Hole

-

1 7 Days -36[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6 ~ 95Round Hole

-

1 7 Days -38[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide6.355Round Hole

-

1 7 Days -38[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide6 ~ 95Round Hole

-

1 7 Days -38[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.355Round Hole

-

1 7 Days -38[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6 ~ 95Round Hole

-

1 7 Days -39[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide6.355Round Hole

-

1 7 Days -39[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide6 ~ 95Round Hole

-

1 7 Days -39[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.355Round Hole

-

1 7 Days -39[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6 ~ 95Round Hole

-

1 7 Days -40[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.355Round Hole

-

1 7 Days -40[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6 ~ 95Round Hole

-

1 7 Days -42[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide6.355Round Hole

-

1 7 Days -42[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide6 ~ 95Round Hole

-

1 7 Days -42[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6.355Round Hole

-

1 7 Days -42[General Steel Material] EN 1.1191 Equiv.Shape BBlack Oxide6 ~ 95Round Hole

-

1 7 Days -44[General Steel Material] EN 1.1191 Equiv.Shape ABlack Oxide6.355Round Hole

Loading...

Back to the Category Spur Gears

Technical Drawing - Spur Gears

Spur Gears/Pressure Angle 20Deg./Module 0.8:Related Image
Spur Gears/Pressure Angle 20Deg./Module 0.8:Related Image
Open the technical drawing in the new window

Specification Tables - Spur Gears

For alterations on tooth width and hub dimensions, see Here.
Part NumberNumber of TeethBGears
Shape
Shaft Bore Dia. PH7
(1mm Increment)
d Reference Dia.D
Tip Dia.
G Root Dia.HL12M (Coarse)*1. Allowable Transmission Force
(N • m)
Bending Strength
Unit Price
Straight BoreStraight Bore + Tap
GEAHBGEABN
(x1.0)
GEABB
(x1.1)
GEABG
(x1.2)
GEABGEABS
TypeModuleStraight Bore Straight Bore + TapEN 1.1191 Equiv.Free-Cutting Brass BarEN 1.4301 Equiv.
Straight Bore
(Shape A, Shape B, Shape K)
GEAHB

Straight Bore + Tap
(Shape B, Shape K)
GEABN
GE
ABB
GEABG
GEAB
GEABS
0.8127K4, 59.611.27.611.220133M31.110.240.63    
144~6, 6.3511.212.89.212.81.430.310.82    
151213.61013.61.600.350.92    
165A


B
12.814.410.8101491.270.280.72    
16771.780.391.01    
18514.41612.491.520.330.87    
18772.130.461.22    
2051617.61491.780.391.02    
20772.500.541.42    
2455~819.220.817.212.592.320.501.32    
24773.250.711.85    
2552021.61892.460.531.40    
25773.440.751.96    
28522.42420.492.890.631.65    
28774.040.882.30    
3052425.62293.160.691.80    
30774.420.962.52    
32525.627.223.6943.420.741.95    
366~828.830.426.814M44.010.872.29    
403233.6304.581.002.61    
453637.6345.331.163.04    
4838.44036.45.771.263.30    
504041.6386.071.323.46    
*1 Allowable Transmission Forces in the table are reference values calculated with prescribed conditions.
 For conditions, see >> P. 1498. Shaft Bore Dia. 6.35 is available.

Alterations - Spur Gears

Spur Gears/Pressure Angle 20Deg./Module 0.8:Related Image

Basic information

Ground Tooth Not Provided Backlash Provided Precision(Old JIS) JIS B 1702 (Class 4)

Frequently Asked Questions (FAQ)

Question:

Can different modules be combined with each other?

Answer:

Since the module describes the division of the teeth along the pitch circle diameter, various modules cannot be combined into one pair of gears.

Question:

What is involute gearing?

Answer:

Evolved gearing is understood to be the convex production of a tooth flank. The sliding friction along the tooth flank can thus be minimized. This also reduces wear and tear.

Question:

What is the pressure angle?

Answer:

The pressure angle is defined as the angle of the highest drive force between two gears. A combination of different pressure angles is not recommended, since increased wear is to be expected.

Question:

Is the position of the keyway to the key-type specified?

Answer:

The keyway has no specified position reference to the tooth base or the head surface of the sprocket.

Question:

What is the reverse clearance?

Answer:

The reverse play arises at the moment of the direction of rotation of a spur gear pairing is changed. It describes the gap between the gear flanks of each tooth in engagement.

Show more FAQ Close

Complementary Products

MISUMI Unit еxample related to this product

Tech Support

Technical Support
Tel:+49 69 668173-0 / FAX:+49 69 668173-360